
Fall 2015 Deep Learning CMPSCI 697L

Deep Learning Lecture
3: Graphical Models

Sridhar Mahadevan
Autonomous Learning Lab
UMass Amherst

COLLEGE

Ludwig
BoltzmannHans Bethe

RECAP FROM LAST LECTURE

Perceptron: linear unit with hard decision boundary

Restricted to learning linearly separable decision boundaries

Logistic regression

Uses logistic function as a smooth nonlinear activation function

Feedforward network

Can represent arbitrary continuous functions

SAMPLE DATASET

-4 -2 0 2 4

-4

-2

0

2

4

data

Colors
indicate

class
labels

CLASSIFIER PERFORMANCE

PARALLEL DISTRIBUTED
MODELS
Two areas of research in ML have explored PDP models

Neural nets

Graphical models

In graphical models, we explore distributed representations of
probability distributions

Undirected models: Markov random fields and variants

Directed models: Bayesian networks

ENERGY AND PROBABILITY:
PHYSICS AND MACHINE LEARNING

ENERGY AND PROBABILITY

energy Probability

P (x) =
e

�E(x)

Z

Z =
X

x

e�E(x)

Second generation neural networks (~1985)

input vector

hidden

layers

outputs

Back-propagate

 error

signal to get

derivatives for

learning

Compare outputs with

correct answer to get

error signalRestricted Boltzmann Machines
(Smolensky ,1986, called them “harmoniums”)

• We restrict the connectivity to make

learning easier.

– Only one layer of hidden units.

• We will deal with more layers later

– No connections between hidden units.

• In an RBM, the hidden units are

conditionally independent given the

visible states.

– So we can quickly get an unbiased

sample from the posterior distribution

when given a data-vector.

– This is a big advantage over directed

belief nets

hidden

i

j

visible

LATENT VARIABLE ENERGY
MODELS

P (x) =
X

h

P (x, h) =
X

h

e

�E(x)

Z

BE THE FREE ENERGY

F (x) = � log

X

h

e

�E(x,h)

Z

Hans Bethe

P (x) =
e

�F (x)

Z

Z =
X

x

e�F (x)

LOG LIKELIHOOD TRAINING

@ logP (x)

@✓

=

@F (x)

@✓

�
X

x

P (x)

@F (x)

@✓

Increase likelihood
of data, by minimizing

free energy

Decrease likelihood

HOPFIELD NETWORKS
652 Chapter 19. Undirected graphical models (Markov random fields)

Figure 19.7 Examples of how an associative memory can reconstruct images. These are binary images
of size 50 ⇥ 50 pixels. Top: training images. Row 2: partially visible test images. Row 3: estimate after
5 iterations. Bottom: final state estimate. Based on Figure 2.1 of Hertz et al. (1991). Figure generated by
hopfieldDemo (needs neural net toolbox from Mathworks).

(a) (b) (c)

Figure 19.8 Visualizing a sample from a 10-state Potts model of size 128 ⇥ 128 for di�erent association
strengths: (a) J = 1.42, (b) J = 1.44, (c) J = 1.46. The regions are labeled according to size: blue is
largest, red is smallest. Used with kind permission of Erik Sudderth. See gibbsDemoIsing for Matlab
code to produce a similar plot for the Ising model.

However, we could equally well apply Gibbs to a Hopfield net and ICM to a Boltzmann machine:
the inference algorithm is not part of the model definition. See Section 27.7 for further details
on Boltzmann machines.

Content
addressable

memory

STATISTICAL PHYSICS
Statistical Physics

Distribution of velocities?

Molecules in a gas

Temperature ~ Kinetic Energy

©Sridhar Mahadevan: CMPSCI 689 – p. 3/28

STATISTICAL PHYSICS AND ML
Statistical Physics and
Machine Learning

The concept of entropy was investigated originally in
statistical physics and thermodynamics.

The temperature of a gas is proportional to the
average kinetic energy of the molecules in the gas.

The distribution of velocities at a given temperature is a
maximum entropy distribution (also known as the
Maxwell-Boltzmann distribution).

Boltzmann machines are a type of neural network that
get their inspiration from statistical physics.

©Sridhar Mahadevan: CMPSCI 689 – p. 4/28

MAX ENTROPY PRINCIPLE
Maximum Entropy
Example

Consider estimating a joint distribution over two
variables u and v, given some constraints

P(u,v) 0 1
0 ? ?
1 ? ?

0.6 1.0

The maximum entropy framework suggests picking
values that make the least commitments, while being
consistent with the contraints that are given.

©Sridhar Mahadevan: CMPSCI 689 – p. 5/28

MAX ENTROPY DISTRIBUTIONSMaximum entropy
distributions

Consider maximizing the entropy h(P) over all
distributions P satisfying the following constraints:

P (x) ≥ 0 (where x ∈ S, the support of P).
∑

x∈S P (x) = 1
∑

x∈S P (x)ri(x) = αi for 1 ≤ i ≤ m.

©Sridhar Mahadevan: CMPSCI 689 – p. 6/28

DERIVING THE MAXENT
DISTRIBUTION

Lagrangian for maximum
entropy distribution

Writing out the Lagrangian, we get

Λ(P) = −
∑

x∈S

P (x) lnP (x) + λ0(
∑

x∈S

P (x)) +

m∑

i=1

λi(
∑

x∈S

P (x)ri(x)− αi)

Taking the gradient of this Lagrangian w.r.t. P (x) we
get

=
∂

∂P

(
−
∑

x∈S

P (x) lnP (x) + λ0(
∑

x∈S

P (x)) +

m∑

i=1

λi(
∑

x∈S

P (x)ri(x)− αi)

)

=

(
− lnP (x)− 1 + λ0 +

m∑

i=1

λiri(x)

)

⇒ P (x) = e

(
λ0−1+

∑m

i=1
λiri(x)

)
x ∈ S

©Sridhar Mahadevan: CMPSCI 689 – p. 7/28

EXAMPLEExample 1: Uniform
Distribution

Find the maximum entropy distribution that satisfies
the following constraints:

S = [a, b]

Since there are no other constraints, the form of the
distribution must be P (x) =

∫ b
a e

λ0dx = 1

This is because all λi = 0, i > 0.

Solving this integral, we find
[
∫ b
a e

λ0dx = 1 ⇒ eλ0(b− a) = 1

which immediately gives us the uniform distribution
because P (x) = eλ0 = 1

b−a

©Sridhar Mahadevan: CMPSCI 689 – p. 9/28

REVIEW OF GRAPHICAL MODELS

Family of Graphical
Models

Causal models Probabilistic dependencies

DAGs
Undirected models

Chordal
graphs

Decomposable
models

Markov fields

CMPSCI 689 – p. 13/3

DEPENDENCY MODELDependency Model
Conditional independence:

P (X|Y,Z) = P (X|Z) denoted as I(X,Z, Y)

The graphoid axioms [Pearl and Paz, 1985]
Symmetry: I(X,Z, Y) ⇔ I(Y,Z,X)

Decomposition:
I(X,Z, Y ∪ W) ⇒ I(X,Z, Y) ∧ I(X,Z,W)

Weak Union: I(X,Z, Y ∪ W) ⇒ I(X,Z ∪ Y,W)

Contraction:
I(X,Z, Y) ∧ I(X,Z,W ∪ Y) ⇒ I(X,Z,W)

CMPSCI 689 – p. 14/3

UNDIRECTED GRAPHICAL
MODEL

Undirected Graphical
Model

WX Z Y

Conditional independence in an undirected graph G

reduces to graph separability.

Graph separability is monotonic: if < X|Z|Y >G, then
I(X|Z ∪ A|Y >G for any A. This is the converse of
weak union.

CMPSCI 689 – p. 15/3

MARKOV BLANKET IN DIRECTED
VS UNDIRECTED MODELS644 Chapter 19. Undirected graphical models (Markov random fields)

X1 X2 X3 X4 X5

X6 X7 X8 X9 X10

X11 X12 X13 X14 X15

X16 X17 X18 X19 X20

(a)

X1 X2 X3 X4 X5

X6 X7 X8 X9 X10

X11 X12 X13 X14 X15

X16 X17 X18 X19 X20

(b)

Figure 19.1 (a) A 2d lattice represented as a DAG. The dotted red node X8 is independent of all other
nodes (black) given its Markov blanket, which include its parents (blue), children (green) and co-parents
(orange). (b) The same model represented as a UGM. The red node X8 is independent of the other black
nodes given its neighbors (blue nodes).

1

2

3

5

4

6

7

(a)

1

2

3

5

4

6

7

(b)

Figure 19.2 (a) A DGM. (b) Its moralized version, represented as a UGM.

the graph is called t’s Markov blanket; we will denote this by mb(t). Formally, the Markov
blanket satisfies the following property:

t ? V \ cl(t)|mb(t) (19.1)

where cl(t) , mb(t) [{t} is the closure of node t. One can show that, in a UGM, a node’s
Markov blanket is its set of immediate neighbors. This is called the undirected local Markov
property. For example, in Figure 19.2(b), we have mb(5) = {2, 3, 4, 6}.
From the local Markov property, we can easily see that two nodes are conditionally indepen-

dent given the rest if there is no direct edge between them. This is called the pairwise Markov
property. In symbols, this is written as

s ? t|V \ {s, t} () Gst = 0 (19.2)

Using the three Markov properties we have discussed, we can derive the following CI properties
(amongst others) from the UGM in Figure 19.2(b):

• Pairwise: 1 ? 7|rest
• Local: 1 ? rest|2, 3
• Global: 1, 2 ? 6, 7|3, 4, 5

ENTROPY VS LIKELIHOODTopics
Maximum entropy is the dual of maximum likelihood.

ME involves finding the “maximally general” distribution
that satisfies a set of prespecified constraints

The notion of “maximal generality” is made precise
using the concept of entropy

The distribution that satisfies the ME constraint can be
shown to be in an exponential form.

The concept of maximum entropy comes from
statistical physics, and this whole area of machine
learning borrows heavily from physics.

©Sridhar Mahadevan: CMPSCI 689 – p. 2/28

DISTRIBUTIONS ON
UNDIRECTED MODELS

Distributions on
Undirected Graphs

The factorization property of directed graphs ensures
that every distribution defined in this way must satisfy
all d-separation properties in the graph.

In undirected models, a similar property holds: a set of
nodes A is conditionally independent of a set of nodes
B given the separating set C, if every path from a node
in A to a node in B goes through a node in C.

We say that a probability distribution P is globally
Markov with respect to an undirected graph G iff for
every disjoint set of nodes A, B, and C, if A ⊥ B|C,
then the distribution also satisfies the same property.

©Sridhar Mahadevan: CMPSCI 689 – p. 24/28

FACTORIZATION IN
UNDIRECTED MODELS

Factorization in
Undirected Models

Define a clique C to be a maximal set of nodes such
that each node is connected to every other node in the
set.

Define the distribution P (S) = 1
Z

∏
C ψC(SC) where

each ψC is an arbitrary potential function on clique C,
and Z is a normalizer.

Theorem: For any undirected graph G, any distribution
which satisfies the factorization property will be
globally Markov.

Hammersley Clifford Theorem: For strictly positive
distributions, the global Markov property is equivalent
to the factorization property. ©Sridhar Mahadevan: CMPSCI 689 – p. 25/28

LOG LINEAR MODELS

19.3. Parameterization of MRFs 649

19.3.2 Representing potential functions

If the variables are discrete, we can represent the potential or energy functions as tables of
(non-negative) numbers, just as we did with CPTs. However, the potentials are not probabilities.
Rather, they represent the relative “compatibility” between the di�erent assignments to the
potential. We will see some examples of this below.
A more general approach is to define the log potentials as a linear function of the parameters:

log c(yc) , �c(yc)
T ✓c (19.11)

where �c(xc) is a feature vector derived from the values of the variables yc. The resulting log
probability has the form

log p(y|✓) =

X

c

�c(yc)
T ✓c � Z(✓) (19.12)

This is also known as a maximum entropy or a log-linear model.
For example, consider a pairwise MRF, where for each edge, we associate a feature vector of

length K2 as follows:

�st(ys, yt) = [. . . , I(ys = j, yt = k), . . .] (19.13)

If we have a weight for each feature, we can convert this into a K ⇥ K potential function as
follows:

 st(ys = j, yt = k) = exp([✓T
st�st]jk) = exp(✓st(j, k)) (19.14)

So we see that we can easily represent tabular potentials using a log-linear form. But the
log-linear form is more general.
To see why this is useful, suppose we are interested in making a probabilistic model of English

spelling. Since certain letter combinations occur together quite frequently (e.g., “ing”), we will
need higher order factors to capture this. Suppose we limit ourselves to letter trigrams. A
tabular potential still has 26

3

= 17, 576 parameters in it. However, most of these triples will
never occur.
An alternative approach is to define indicator functions that look for certain “special” triples,

such as “ing”, “qu-”, etc. Then we can define the potential on each trigram as follows:

 (yt�1

, yt, yt+1

) = exp(

X

k

✓k�k(yt�1

, yt, yt+1

)) (19.15)

where k indexes the di�erent features, corresponding to “ing”, “qu-”, etc., and �k is the corre-
sponding binary feature function. By tying the parameters across locations, we can define the
probability of a word of any length using

p(y|✓) / exp(

X

t

X

k

✓k�k(yt�1

, yt, yt+1

)) (19.16)

This raises the question of where these feature functions come from. In many applications,
they are created by hand to reflect domain knowledge (we will see examples later), but it is also
possible to learn them from data, as we discuss in Section 19.5.6.

19.3. Parameterization of MRFs 649

19.3.2 Representing potential functions

If the variables are discrete, we can represent the potential or energy functions as tables of
(non-negative) numbers, just as we did with CPTs. However, the potentials are not probabilities.
Rather, they represent the relative “compatibility” between the di�erent assignments to the
potential. We will see some examples of this below.
A more general approach is to define the log potentials as a linear function of the parameters:

log c(yc) , �c(yc)
T ✓c (19.11)

where �c(xc) is a feature vector derived from the values of the variables yc. The resulting log
probability has the form

log p(y|✓) =

X

c

�c(yc)
T ✓c � Z(✓) (19.12)

This is also known as a maximum entropy or a log-linear model.
For example, consider a pairwise MRF, where for each edge, we associate a feature vector of

length K2 as follows:

�st(ys, yt) = [. . . , I(ys = j, yt = k), . . .] (19.13)

If we have a weight for each feature, we can convert this into a K ⇥ K potential function as
follows:

 st(ys = j, yt = k) = exp([✓T
st�st]jk) = exp(✓st(j, k)) (19.14)

So we see that we can easily represent tabular potentials using a log-linear form. But the
log-linear form is more general.
To see why this is useful, suppose we are interested in making a probabilistic model of English

spelling. Since certain letter combinations occur together quite frequently (e.g., “ing”), we will
need higher order factors to capture this. Suppose we limit ourselves to letter trigrams. A
tabular potential still has 26

3

= 17, 576 parameters in it. However, most of these triples will
never occur.
An alternative approach is to define indicator functions that look for certain “special” triples,

such as “ing”, “qu-”, etc. Then we can define the potential on each trigram as follows:

 (yt�1

, yt, yt+1

) = exp(

X

k

✓k�k(yt�1

, yt, yt+1

)) (19.15)

where k indexes the di�erent features, corresponding to “ing”, “qu-”, etc., and �k is the corre-
sponding binary feature function. By tying the parameters across locations, we can define the
probability of a word of any length using

p(y|✓) / exp(

X

t

X

k

✓k�k(yt�1

, yt, yt+1

)) (19.16)

This raises the question of where these feature functions come from. In many applications,
they are created by hand to reflect domain knowledge (we will see examples later), but it is also
possible to learn them from data, as we discuss in Section 19.5.6.

Pairwise MRF

19.3. Parameterization of MRFs 649

19.3.2 Representing potential functions

If the variables are discrete, we can represent the potential or energy functions as tables of
(non-negative) numbers, just as we did with CPTs. However, the potentials are not probabilities.
Rather, they represent the relative “compatibility” between the di�erent assignments to the
potential. We will see some examples of this below.
A more general approach is to define the log potentials as a linear function of the parameters:

log c(yc) , �c(yc)
T ✓c (19.11)

where �c(xc) is a feature vector derived from the values of the variables yc. The resulting log
probability has the form

log p(y|✓) =

X

c

�c(yc)
T ✓c � Z(✓) (19.12)

This is also known as a maximum entropy or a log-linear model.
For example, consider a pairwise MRF, where for each edge, we associate a feature vector of

length K2 as follows:

�st(ys, yt) = [. . . , I(ys = j, yt = k), . . .] (19.13)

If we have a weight for each feature, we can convert this into a K ⇥ K potential function as
follows:

 st(ys = j, yt = k) = exp([✓T
st�st]jk) = exp(✓st(j, k)) (19.14)

So we see that we can easily represent tabular potentials using a log-linear form. But the
log-linear form is more general.
To see why this is useful, suppose we are interested in making a probabilistic model of English

spelling. Since certain letter combinations occur together quite frequently (e.g., “ing”), we will
need higher order factors to capture this. Suppose we limit ourselves to letter trigrams. A
tabular potential still has 26

3

= 17, 576 parameters in it. However, most of these triples will
never occur.
An alternative approach is to define indicator functions that look for certain “special” triples,

such as “ing”, “qu-”, etc. Then we can define the potential on each trigram as follows:

 (yt�1

, yt, yt+1

) = exp(

X

k

✓k�k(yt�1

, yt, yt+1

)) (19.15)

where k indexes the di�erent features, corresponding to “ing”, “qu-”, etc., and �k is the corre-
sponding binary feature function. By tying the parameters across locations, we can define the
probability of a word of any length using

p(y|✓) / exp(

X

t

X

k

✓k�k(yt�1

, yt, yt+1

)) (19.16)

This raises the question of where these feature functions come from. In many applications,
they are created by hand to reflect domain knowledge (we will see examples later), but it is also
possible to learn them from data, as we discuss in Section 19.5.6.

19.3. Parameterization of MRFs 649

19.3.2 Representing potential functions

If the variables are discrete, we can represent the potential or energy functions as tables of
(non-negative) numbers, just as we did with CPTs. However, the potentials are not probabilities.
Rather, they represent the relative “compatibility” between the di�erent assignments to the
potential. We will see some examples of this below.
A more general approach is to define the log potentials as a linear function of the parameters:

log c(yc) , �c(yc)
T ✓c (19.11)

where �c(xc) is a feature vector derived from the values of the variables yc. The resulting log
probability has the form

log p(y|✓) =

X

c

�c(yc)
T ✓c � Z(✓) (19.12)

This is also known as a maximum entropy or a log-linear model.
For example, consider a pairwise MRF, where for each edge, we associate a feature vector of

length K2 as follows:

�st(ys, yt) = [. . . , I(ys = j, yt = k), . . .] (19.13)

If we have a weight for each feature, we can convert this into a K ⇥ K potential function as
follows:

 st(ys = j, yt = k) = exp([✓T
st�st]jk) = exp(✓st(j, k)) (19.14)

So we see that we can easily represent tabular potentials using a log-linear form. But the
log-linear form is more general.
To see why this is useful, suppose we are interested in making a probabilistic model of English

spelling. Since certain letter combinations occur together quite frequently (e.g., “ing”), we will
need higher order factors to capture this. Suppose we limit ourselves to letter trigrams. A
tabular potential still has 26

3

= 17, 576 parameters in it. However, most of these triples will
never occur.
An alternative approach is to define indicator functions that look for certain “special” triples,

such as “ing”, “qu-”, etc. Then we can define the potential on each trigram as follows:

 (yt�1

, yt, yt+1

) = exp(

X

k

✓k�k(yt�1

, yt, yt+1

)) (19.15)

where k indexes the di�erent features, corresponding to “ing”, “qu-”, etc., and �k is the corre-
sponding binary feature function. By tying the parameters across locations, we can define the
probability of a word of any length using

p(y|✓) / exp(

X

t

X

k

✓k�k(yt�1

, yt, yt+1

)) (19.16)

This raises the question of where these feature functions come from. In many applications,
they are created by hand to reflect domain knowledge (we will see examples later), but it is also
possible to learn them from data, as we discuss in Section 19.5.6.

ISING MODELS IN PHYSICS

“Energy” models
using the Hamiltonian

partition function:

EXAMPLE: ONE-DIMENSIONAL
ISING MODEL

TRAINING UNDIRECTED
MODELS

19.5. Learning 661

Method Restriction Exact MLE? Section
Closed form Only Chordal MRF Exact Section 19.5.7.4
IPF Only Tabular / Gaussian MRF Exact Section 19.5.7
Gradient-based optimization Low tree width Exact Section 19.8
Max-margin training Only CRFs N/A Section 19.9
Pseudo-likelihood No hidden variables Approximate Section 19.5.4
Stochastic ML - Exact (up to MC error) Section 19.5.5
Contrastive divergence - Approximate Section 27.7.2.4
Minimum probability flow Can integrate out the hiddens Approximate Sohl-Dickstein et al. (2011)

Table 19.1 Some methods that can be used to compute approximate ML/ MAP parameter estimates for
MRFs/ CRFs. Low tree-width means that, in order for the method to be e�cient, the graph must “tree-like”;
see Section 20.5 for details.

(a) (b)

Figure 19.13 (a) A small 2d lattice. (b) The representation used by pseudo likelihood. Solid nodes are
observed neighbors. Based on Figure 2.2 of (Carbonetto 2003).

In the case of Gaussian MRFs, PL is equivalent to ML (Besag 1975), but this is not true in general
(Liang and Jordan 2008).
The PL approach is illustrated in Figure 19.13 for a 2d grid. We learn to predict each node,

given all of its neighbors. This objective is generally fast to compute since each full conditional
p(yid|yi,�d, ✓) only requires summing over the states of a single node, yid, in order to compute
the local normalization constant. The PL approach is similar to fitting each full conditional
separately (which is the method used to train dependency networks, discussed in Section 26.2.2),
except that the parameters are tied between adjacent nodes.

One problem with PL is that it is hard to apply to models with hidden variables (Parise and
Welling 2005). Another more subtle problem is that each node assumes that its neighbors have
known values. If node t 2 nbr(s) is a perfect predictor for node s, then s will learn to rely
completely on node t, even at the expense of ignoring other potentially useful information, such
as its local evidence.

However, experiments in (Parise and Welling 2005; Hoefling and Tibshirani 2009) suggest that
PL works as well as exact ML for fully observed Ising models, and of course PL is much faster.

EXACT GRADIENT METHODS

658 Chapter 19. Undirected graphical models (Markov random fields)

Inference in first-order logic is only semi-decidable, so it is common to use a restricted subset.
A common approach (as used in Prolog) is to restrict the language to Horn clauses, which are
clauses that contain at most one positive literal. Essentially this means the model is a series of
if-then rules, where the right hand side of the rules (the “then” part, or consequence) has only
a single term.
Once we have encoded our knowledge base as a set of clauses, we can attach weights to

each one; these weights are the parameter of the model, and they define the clique potentials
as follows:

 c(xc) = exp(wc�c(xc)) (19.36)

where �c(xc) is a logical expression which evaluates clause c applied to the variables xc, and
wc is the weight we attach to this clause. Roughly speaking, the weight of a clause specifies
the probability of a world in which this clause is satsified relative to a world in which it is not
satisfied.
Now suppose there are two objects (people) in the world, Anna and Bob, which we will denote

by constant symbols A and B. We can make a ground network from the above clauses by
creating binary random variables Sx, Cx, and Fx,y for x, y 2 {A, B}, and then “wiring these
up” according to the clauses above. The result is the UGM in Figure 19.12 with 8 binary nodes.
Note that we have not encoded the fact that Fr is a symmetric relation, so Fr(A, B) and
Fr(B, A) might have di�erent values. Similarly, we have the “degenerate” nodes Fr(A, A) and
Fr(B, B), since we did not enforce x 6= y in Equation 19.33. (If we add such constraints,
then the model compiler, which generates the ground network, could avoid creating redundant
nodes.)
In summary, we can think of MLNs as a convenient way of specifying a UGM template, that

can get unrolled to handle data of arbitrary size. There are several other ways to define relational
probabilistic models; see e.g., (Koller and Friedman 2009; Kersting et al. 2011) for details. In some
cases, there is uncertainty about the number or existence of objects or relations (the so-called
open universe problem). Section 18.6.2 gives a concrete example in the context of multi-object
tracking. See e.g., (Russell and Norvig 2010; Kersting et al. 2011) and references therein for further
details.

19.5 Learning

In this section, we discuss how to perform ML and MAP parameter estimation for MRFs. We will
see that this is quite computationally expensive. For this reason, it is rare to perform Bayesian
inference for the parameters of MRFs (although see (Qi et al. 2005)).

19.5.1 Training maxent models using gradient methods

Consider an MRF in log-linear form:

p(y|✓) =

1

Z(✓
exp

X

c

✓T
c �c(y)

!
(19.37)

19.5. Learning 659

where c indexes the cliques. The scaled log-likelihood is given by

`(✓) , 1

N

X

i

log p(yi|✓) =

1

N

X

i

"
X

c

✓T
c �c(yi) � log Z(✓)

#
(19.38)

Since MRFs are in the exponential family, we know that this function is convex in ✓ (see
Section 9.2.3), so it has a unique global maximum which we can find using gradient-based
optimizers. In particular, the derivative for the weights of a particular clique, c, is given by

@`

@✓c
=

1

N

X

i

�c(yi) � @

@✓c
log Z(✓)

�
(19.39)

Exercise 19.1 asks you to show that the derivative of the log partition function wrt ✓c is the
expectation of the c’th feature under the model, i.e.,

@ log Z(✓)

@✓c
= E [�c(y)|✓] =

X

y

�c(y)p(y|✓) (19.40)

Hence the gradient of the log likelihood is

@`

@✓c
=

"
1

N

X

i

�c(yi)

#
� E [�c(y)] (19.41)

In the first term, we fix y to its observed values; this is sometimes called the clamped term.
In the second term, y is free; this is sometimes called the unclamped term or contrastive
term. Note that computing the unclamped term requires inference in the model, and this must
be done once per gradient step. This makes UGM training much slower than DGM training.
The gradient of the log likelihood can be rewritten as the expected feature vector according

to the empirical distribution minus the model’s expectation of the feature vector:

@`

@✓c
= Epemp [�c(y)] � E✓ [�c(y)] (19.42)

At the optimum, the gradient will be zero, so the empirical distribution of the features will
match the model’s predictions:

Epemp [�c(y)] = Ep(·|✓)

[�c(y)] (19.43)

This is called moment matching. This observation motivates a di�erent optimization algorithm
which we discuss in Section 19.5.7.

19.5.2 Training partially observed maxent models

Suppose we have missing data and/or hidden variables in our model. In general, we can
represent such models as follows:

p(y,h|✓) =

1

Z(✓)

exp(

X

c

✓T
c �c(h,y)) (19.44)

19.5. Learning 659

where c indexes the cliques. The scaled log-likelihood is given by

`(✓) , 1

N

X

i

log p(yi|✓) =

1

N

X

i

"
X

c

✓T
c �c(yi) � log Z(✓)

#
(19.38)

Since MRFs are in the exponential family, we know that this function is convex in ✓ (see
Section 9.2.3), so it has a unique global maximum which we can find using gradient-based
optimizers. In particular, the derivative for the weights of a particular clique, c, is given by

@`

@✓c
=

1

N

X

i

�c(yi) � @

@✓c
log Z(✓)

�
(19.39)

Exercise 19.1 asks you to show that the derivative of the log partition function wrt ✓c is the
expectation of the c’th feature under the model, i.e.,

@ log Z(✓)

@✓c
= E [�c(y)|✓] =

X

y

�c(y)p(y|✓) (19.40)

Hence the gradient of the log likelihood is

@`

@✓c
=

"
1

N

X

i

�c(yi)

#
� E [�c(y)] (19.41)

In the first term, we fix y to its observed values; this is sometimes called the clamped term.
In the second term, y is free; this is sometimes called the unclamped term or contrastive
term. Note that computing the unclamped term requires inference in the model, and this must
be done once per gradient step. This makes UGM training much slower than DGM training.
The gradient of the log likelihood can be rewritten as the expected feature vector according

to the empirical distribution minus the model’s expectation of the feature vector:

@`

@✓c
= Epemp [�c(y)] � E✓ [�c(y)] (19.42)

At the optimum, the gradient will be zero, so the empirical distribution of the features will
match the model’s predictions:

Epemp [�c(y)] = Ep(·|✓)

[�c(y)] (19.43)

This is called moment matching. This observation motivates a di�erent optimization algorithm
which we discuss in Section 19.5.7.

19.5.2 Training partially observed maxent models

Suppose we have missing data and/or hidden variables in our model. In general, we can
represent such models as follows:

p(y,h|✓) =

1

Z(✓)

exp(

X

c

✓T
c �c(h,y)) (19.44)

19.5. Learning 659

where c indexes the cliques. The scaled log-likelihood is given by

`(✓) , 1

N

X

i

log p(yi|✓) =

1

N

X

i

"
X

c

✓T
c �c(yi) � log Z(✓)

#
(19.38)

Since MRFs are in the exponential family, we know that this function is convex in ✓ (see
Section 9.2.3), so it has a unique global maximum which we can find using gradient-based
optimizers. In particular, the derivative for the weights of a particular clique, c, is given by

@`

@✓c
=

1

N

X

i

�c(yi) � @

@✓c
log Z(✓)

�
(19.39)

Exercise 19.1 asks you to show that the derivative of the log partition function wrt ✓c is the
expectation of the c’th feature under the model, i.e.,

@ log Z(✓)

@✓c
= E [�c(y)|✓] =

X

y

�c(y)p(y|✓) (19.40)

Hence the gradient of the log likelihood is

@`

@✓c
=

"
1

N

X

i

�c(yi)

#
� E [�c(y)] (19.41)

In the first term, we fix y to its observed values; this is sometimes called the clamped term.
In the second term, y is free; this is sometimes called the unclamped term or contrastive
term. Note that computing the unclamped term requires inference in the model, and this must
be done once per gradient step. This makes UGM training much slower than DGM training.
The gradient of the log likelihood can be rewritten as the expected feature vector according

to the empirical distribution minus the model’s expectation of the feature vector:

@`

@✓c
= Epemp [�c(y)] � E✓ [�c(y)] (19.42)

At the optimum, the gradient will be zero, so the empirical distribution of the features will
match the model’s predictions:

Epemp [�c(y)] = Ep(·|✓)

[�c(y)] (19.43)

This is called moment matching. This observation motivates a di�erent optimization algorithm
which we discuss in Section 19.5.7.

19.5.2 Training partially observed maxent models

Suppose we have missing data and/or hidden variables in our model. In general, we can
represent such models as follows:

p(y,h|✓) =

1

Z(✓)

exp(

X

c

✓T
c �c(h,y)) (19.44)

19.5. Learning 659

where c indexes the cliques. The scaled log-likelihood is given by

`(✓) , 1

N

X

i

log p(yi|✓) =

1

N

X

i

"
X

c

✓T
c �c(yi) � log Z(✓)

#
(19.38)

Since MRFs are in the exponential family, we know that this function is convex in ✓ (see
Section 9.2.3), so it has a unique global maximum which we can find using gradient-based
optimizers. In particular, the derivative for the weights of a particular clique, c, is given by

@`

@✓c
=

1

N

X

i

�c(yi) � @

@✓c
log Z(✓)

�
(19.39)

Exercise 19.1 asks you to show that the derivative of the log partition function wrt ✓c is the
expectation of the c’th feature under the model, i.e.,

@ log Z(✓)

@✓c
= E [�c(y)|✓] =

X

y

�c(y)p(y|✓) (19.40)

Hence the gradient of the log likelihood is

@`

@✓c
=

"
1

N

X

i

�c(yi)

#
� E [�c(y)] (19.41)

In the first term, we fix y to its observed values; this is sometimes called the clamped term.
In the second term, y is free; this is sometimes called the unclamped term or contrastive
term. Note that computing the unclamped term requires inference in the model, and this must
be done once per gradient step. This makes UGM training much slower than DGM training.
The gradient of the log likelihood can be rewritten as the expected feature vector according

to the empirical distribution minus the model’s expectation of the feature vector:

@`

@✓c
= Epemp [�c(y)] � E✓ [�c(y)] (19.42)

At the optimum, the gradient will be zero, so the empirical distribution of the features will
match the model’s predictions:

Epemp [�c(y)] = Ep(·|✓)

[�c(y)] (19.43)

This is called moment matching. This observation motivates a di�erent optimization algorithm
which we discuss in Section 19.5.7.

19.5.2 Training partially observed maxent models

Suppose we have missing data and/or hidden variables in our model. In general, we can
represent such models as follows:

p(y,h|✓) =

1

Z(✓)

exp(

X

c

✓T
c �c(h,y)) (19.44)

STOCHASTIC GRADIENT
METHOD

662 Chapter 19. Undirected graphical models (Markov random fields)

19.5.5 Stochastic Maximum Likelihood

Recall that the gradient of the log-likelihood for a fully observed MRF is given by

r✓`(✓) =

1

N

X

i

[�(yi) � E [�(y)]] (19.51)

The gradient for a partially observed MRF is similar. In both cases, we can approximate the
model expectations using Monte Carlo sampling. We can combine this with stochastic gradient
descent (Section 8.5.2), which takes samples from the empirical distribution. Pseudocode for the
resulting method is shown in Algorithm 3.

Algorithm 19.1: Stochastic maximum likelihood for fitting an MRF

1 Initialize weights ✓ randomly;
2 k = 0, ⌘ = 1 ;
3 for each epoch do
4 for each minibatch of size B do
5 for each sample s = 1 : S do
6 Sample ys,k ⇠ p(y|✓k) ;

7 ˆE(�(y)) =

1

S

PS
s=1

�(ys,k
);

8 for each training case i in minibatch do
9 gik = �(yi) � ˆE(�(y)) ;

10 gk =

1

B

P
i2B gik ;

11 ✓k+1

= ✓k � ⌘gk ;
12 k = k + 1;
13 Decrease step size ⌘;

Typically we use MCMC to generate the samples. Of course, running MCMC to convergence
at each step of the inner loop would be extremely slow. Fortunately, it was shown in (Younes
1989) that we can start the MCMC chain at its previous value, and just take a few steps. In
otherwords, we sample ys,k by initializing the MCMC chain at ys,k�1, and then run for a few
iterations. This is valid since p(y|✓k

) is likely to be close to p(y|✓k�1

), since we only changed
the parameters a small amount. We call this algorithm stochastic maximum likelihood or
SML.
There is a closely related algorithm called persistent contrastive divergence which we discuss

in Section 27.7.2.5.

19.5.6 Feature induction for maxent models *

MRFs require a good set of features. One unsupervised way to learn such features, known as
feature induction, is to start with a base set of features, and then to continually create new
feature combinations out of old ones, greedily adding the best ones to the model. This approach
was first proposed in (Pietra et al. 1997; Zhu et al. 1997), and was later extended to the CRF case
in (McCallum 2003).

BOLTZMANN MACHINES
Boltzmann machines were
developed in the 1980s

They are a class of undirected
graphical models

Deep Boltzmann Machines

Ruslan Salakhutdinov
Department of Computer Science

University of Toronto
rsalakhu@cs.toronto.edu

Geoffrey Hinton
Department of Computer Science

University of Toronto
hinton@cs.toronto.edu

Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a variational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains. The use of two
quite different techniques for estimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can
be made more efficient by using a layer-by-layer
“pre-training” phase that allows variational in-
ference to be initialized with a single bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.

1 Introduction

The original learning algorithm for Boltzmann machines
(Hinton and Sejnowski, 1983) required randomly initial-
ized Markov chains to approach their equilibrium distri-
butions in order to estimate the data-dependent and data-
independent expectations that a connected pair of binary
variables would both be on. The difference of these two ex-
pectations is the gradient required for maximum likelihood
learning. Even with the help of simulated annealing, this
learning procedure was too slow to be practical. Learning
can be made much more efficient in a restricted Boltzmann
machine (RBM), which has no connections between hidden

Appearing in Proceedings of the 12th International Confe-rence
on Artificial Intelligence and Statistics (AISTATS) 2009, Clearwa-
ter Beach, Florida, USA. Volume 5 of JMLR:W&CP 5. Copyright
2009 by the authors.

units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006). However, if multiple layers
are learned in this greedy, layer-by-layer way, the resulting
composite model is not a multilayer Boltzmann machine
(Hinton et al., 2006). It is a hybrid generative model called
a “deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all its lower layers.

In this paper we present a much more efficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it is possible to use a stack of slightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine before applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visible units
v ∈ {0, 1}D, and a set of hidden units h ∈ {0, 1}P (see
Fig. 1). The energy of the state {v,h} is defined as:

E(v,h; θ) = −
1

2
v
⊤
Lv −

1

2
h
⊤
Jh− v

⊤
Wh, (1)

where θ = {W,L,J} are the model parameters1: W, L, J
represent visible-to-hidden, visible-to-visible, and hidden-
to-hidden symmetric interaction terms. The diagonal ele-
ments of L and J are set to 0. The probability that the
model assigns to a visible vector v is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

where p∗ denotes unnormalized probability, and Z(θ) is
the partition function. The conditional distributions over

1We have omitted the bias terms for clarity of presentation

Deep Boltzmann Machines

Ruslan Salakhutdinov
Department of Computer Science

University of Toronto
rsalakhu@cs.toronto.edu

Geoffrey Hinton
Department of Computer Science

University of Toronto
hinton@cs.toronto.edu

Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a variational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains. The use of two
quite different techniques for estimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can
be made more efficient by using a layer-by-layer
“pre-training” phase that allows variational in-
ference to be initialized with a single bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.

1 Introduction

The original learning algorithm for Boltzmann machines
(Hinton and Sejnowski, 1983) required randomly initial-
ized Markov chains to approach their equilibrium distri-
butions in order to estimate the data-dependent and data-
independent expectations that a connected pair of binary
variables would both be on. The difference of these two ex-
pectations is the gradient required for maximum likelihood
learning. Even with the help of simulated annealing, this
learning procedure was too slow to be practical. Learning
can be made much more efficient in a restricted Boltzmann
machine (RBM), which has no connections between hidden

Appearing in Proceedings of the 12th International Confe-rence
on Artificial Intelligence and Statistics (AISTATS) 2009, Clearwa-
ter Beach, Florida, USA. Volume 5 of JMLR:W&CP 5. Copyright
2009 by the authors.

units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006). However, if multiple layers
are learned in this greedy, layer-by-layer way, the resulting
composite model is not a multilayer Boltzmann machine
(Hinton et al., 2006). It is a hybrid generative model called
a “deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all its lower layers.

In this paper we present a much more efficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it is possible to use a stack of slightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine before applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visible units
v ∈ {0, 1}D, and a set of hidden units h ∈ {0, 1}P (see
Fig. 1). The energy of the state {v,h} is defined as:

E(v,h; θ) = −
1

2
v
⊤
Lv −

1

2
h
⊤
Jh− v

⊤
Wh, (1)

where θ = {W,L,J} are the model parameters1: W, L, J
represent visible-to-hidden, visible-to-visible, and hidden-
to-hidden symmetric interaction terms. The diagonal ele-
ments of L and J are set to 0. The probability that the
model assigns to a visible vector v is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

where p∗ denotes unnormalized probability, and Z(θ) is
the partition function. The conditional distributions over

1We have omitted the bias terms for clarity of presentation

Deep Boltzmann Machines

Ruslan Salakhutdinov
Department of Computer Science

University of Toronto
rsalakhu@cs.toronto.edu

Geoffrey Hinton
Department of Computer Science

University of Toronto
hinton@cs.toronto.edu

Abstract

We present a new learning algorithm for Boltz-
mann machines that contain many layers of hid-
den variables. Data-dependent expectations are
estimated using a variational approximation that
tends to focus on a single mode, and data-
independent expectations are approximated us-
ing persistent Markov chains. The use of two
quite different techniques for estimating the two
types of expectation that enter into the gradient
of the log-likelihood makes it practical to learn
Boltzmann machines with multiple hidden lay-
ers and millions of parameters. The learning can
be made more efficient by using a layer-by-layer
“pre-training” phase that allows variational in-
ference to be initialized with a single bottom-
up pass. We present results on the MNIST and
NORB datasets showing that deep Boltzmann
machines learn good generative models and per-
form well on handwritten digit and visual object
recognition tasks.

1 Introduction

The original learning algorithm for Boltzmann machines
(Hinton and Sejnowski, 1983) required randomly initial-
ized Markov chains to approach their equilibrium distri-
butions in order to estimate the data-dependent and data-
independent expectations that a connected pair of binary
variables would both be on. The difference of these two ex-
pectations is the gradient required for maximum likelihood
learning. Even with the help of simulated annealing, this
learning procedure was too slow to be practical. Learning
can be made much more efficient in a restricted Boltzmann
machine (RBM), which has no connections between hidden

Appearing in Proceedings of the 12th International Confe-rence
on Artificial Intelligence and Statistics (AISTATS) 2009, Clearwa-
ter Beach, Florida, USA. Volume 5 of JMLR:W&CP 5. Copyright
2009 by the authors.

units (Hinton, 2002). Multiple hidden layers can be learned
by treating the hidden activities of one RBM as the data
for training a higher-level RBM (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006). However, if multiple layers
are learned in this greedy, layer-by-layer way, the resulting
composite model is not a multilayer Boltzmann machine
(Hinton et al., 2006). It is a hybrid generative model called
a “deep belief net” that has undirected connections between
its top two layers and downward directed connections be-
tween all its lower layers.

In this paper we present a much more efficient learning
procedure for fully general Boltzmann machines. We also
show that if the connections between hidden units are re-
stricted in such a way that the hidden units form multi-
ple layers, it is possible to use a stack of slightly modified
RBM’s to initialize the weights of a deep Boltzmann ma-
chine before applying our new learning procedure.

2 Boltzmann Machines (BM’s)

A Boltzmann machine is a network of symmetrically cou-
pled stochastic binary units. It contains a set of visible units
v ∈ {0, 1}D, and a set of hidden units h ∈ {0, 1}P (see
Fig. 1). The energy of the state {v,h} is defined as:

E(v,h; θ) = −
1

2
v
⊤
Lv −

1

2
h
⊤
Jh− v

⊤
Wh, (1)

where θ = {W,L,J} are the model parameters1: W, L, J
represent visible-to-hidden, visible-to-visible, and hidden-
to-hidden symmetric interaction terms. The diagonal ele-
ments of L and J are set to 0. The probability that the
model assigns to a visible vector v is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

where p∗ denotes unnormalized probability, and Z(θ) is
the partition function. The conditional distributions over

1We have omitted the bias terms for clarity of presentation

Deep Boltzmann Machines

h

v

J

W

L

h

v

W

General Boltzmann
Machine

Restricted Boltzmann
Machine

Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(

D
∑

i=1

Wijvi +
P

∑

m=1\j

Jjmhj

)

, (4)

p(vi = 1|h,v−i) = σ
(

P
∑

j=1

Wijhj +
D

∑

k=1\i

Likvj

)

, (5)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

⊤]− EPmodel
[vh

⊤]
)

, (6)
∆L = α

(

EPdata
[vv

⊤]− EPmodel
[vv

⊤]
)

,

∆J = α
(

EPdata
[hh

⊤]− EPmodel
[hh

⊤]
)

,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑

n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting both J=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the

LEARNING BOLTZMANN
MACHINES

A gradient based learning method
for Boltzmann machines was
developed by Hinton and
Sejnowski (1983)

Exact learning is intractable in
Boltzmann machines because
computing the expectations takes
time exponential in the number
of hidden units

Deep Boltzmann Machines

h

v

J

W

L

h

v

W

General Boltzmann
Machine

Restricted Boltzmann
Machine

Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(

D
∑

i=1

Wijvi +
P

∑

m=1\j

Jjmhj

)

, (4)

p(vi = 1|h,v−i) = σ
(

P
∑

j=1

Wijhj +
D

∑

k=1\i

Likvj

)

, (5)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

⊤]− EPmodel
[vh

⊤]
)

, (6)
∆L = α

(

EPdata
[vv

⊤]− EPmodel
[vv

⊤]
)

,

∆J = α
(

EPdata
[hh

⊤]− EPmodel
[hh

⊤]
)

,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑

n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting both J=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the

Deep Boltzmann Machines

h

v

J

W

L

h

v

W

General Boltzmann
Machine

Restricted Boltzmann
Machine

Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(

D
∑

i=1

Wijvi +
P

∑

m=1\j

Jjmhj

)

, (4)

p(vi = 1|h,v−i) = σ
(

P
∑

j=1

Wijhj +
D

∑

k=1\i

Likvj

)

, (5)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

⊤]− EPmodel
[vh

⊤]
)

, (6)
∆L = α

(

EPdata
[vv

⊤]− EPmodel
[vv

⊤]
)

,

∆J = α
(

EPdata
[hh

⊤]− EPmodel
[hh

⊤]
)

,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑

n δ(v − vn) representing the empirical distribution,
and EPmodel

[·] is an expectation with respect to the distri-
bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.

Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting both J=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt

(Xt+1; Xt) that leaves pθt
invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the

RESTRICTED BOLTZMANN
MACHINES

Undirected graphical models used
in deep learning

Bipartite structure makes inference
tractable

Pairwise Markov random field

Restricted Boltzmann Machines
(Smolensky ,1986, called them “harmoniums”)

• We restrict the connectivity to make

learning easier.

– Only one layer of hidden units.

• We will deal with more layers later

– No connections between hidden units.

• In an RBM, the hidden units are

conditionally independent given the

visible states.

– So we can quickly get an unbiased

sample from the posterior distribution

when given a data-vector.

– This is a big advantage over directed

belief nets

hidden

i

j

visible

938 Chapter 27. Latent variable models for discrete data

(a)

H

V

(b)

Figure 27.31 (a) A general Boltzmann machine, with an arbitrary graph structure. The shaded (visible)
nodes are partitioned into input and output, although the model is actually symmetric and defines a joint
density on all the nodes. (b) A restricted Boltzmann machine with a bipartite structure. Note the lack of
intra-layer connections.

be slow. However, suppose we restrict the architecture so that the nodes are arranged in layers,
and so that there are no connections between nodes within the same layer (see Figure 27.31(b)).
Then the model has the form

p(h,v|✓) =

1

Z(✓)

RY

r=1

KY

k=1

 rk(vr, hk) (27.95)

where R is the number of visible (response) variables, K is the number of hidden variables, and
v plays the role of y earlier in this chapter. This model is known as a restricted Boltzmann
machine (RBM) (Hinton 2002), or a harmonium (Smolensky 1986).
An RBM is a special case of a product of experts (PoE) (Hinton 1999), which is so-called

because we are multiplying together a set of “experts” (here, potential functions on each edge)
and then normalizing, whereas in a mixture of experts, we take a convex combination of
normalized distributions. The intuitive reason why PoE models might work better than a mixture
is that each expert can enforce a constraint (if the expert has a value which is � 1 or ⌧ 1)
or a “don’t care” condition (if the expert has value 1). By multiplying these experts together
in di�erent ways we can create “sharp” distributions which predict data which satisfies the
specified constraints (Hinton and Teh 2001). For example, consider a distributed model of text.
A given document might have the topics “government”, “mafia” and “playboy”. If we “multiply”
the predictions of each topic together, the model may give very high probability to the word
“Berlusconi”8 (Salakhutdinov and Hinton 2010). By contrast, adding together experts can only
make the distribution broader (see Figure 14.17).
Typically the hidden nodes in an RBM are binary, so h specifies which constraints are active.

It is worth comparing this with the directed models we have discussed. In a mixture model, we
have one hidden variable q 2 {1, . . . , K}. We can represent this using a set of K bits, with the

8. Silvio Berlusconi is the current (2011) prime minister of Italy.

27.7. Restricted Boltzmann machines (RBMs) 939

Visible Hidden Name Reference
Binary Binary Binary RBM (Hinton 2002)
Gaussian Binary Gaussian RBM (Welling and Sutton 2005)
Categorical Binary Categorical RBM (Salakhutdinov et al. 2007)
Multiple categorical Binary Replicated softmax/ undirected LDA (Salakhutdinov and Hinton 2010)
Gaussian Gaussian Undirected PCA (Marks and Movellan 2001)
Binary Gaussian Undirected binary PCA (Welling and Sutton 2005)

Table 27.1 Summary of di�erent kinds of RBM.

restriction that exactly one bit is on at a time. This is called a localist encoding, since only
one hidden unit is used to generate the response vector. This is analogous to the hypothetical
notion of grandmother cells in the brain, that are able to recognize only one kind of object.
By contrast, an RBM uses a distributed encoding, where many units are involved in generating
each output. Models that used vector-valued hidden variables, such as ⇡ 2 SK , as in mPCA/
LDA, or z 2 RK , as in ePCA also use distributed encodings.
The main di�erence between an RBM and directed two-layer models is that the hidden

variables are conditionally independent given the visible variables, so the posterior factorizes:

p(h|v, ✓) =

Y

k

p(hk|v, ✓) (27.96)

This makes inference much simpler than in a directed model, since we can estimate each hk

independently and in parallel, as in a feedforward neural network. The disadvantage is that
training undirected models is much harder, as we discuss below.

27.7.1 Varieties of RBMs

In this section, we describe various forms of RBMs, by defining di�erent pairwise potential
functions. See Table 27.1 for a summary. All of these are special cases of the exponential
family harmonium (Welling et al. 2004).

27.7.1.1 Binary RBMs

The most common form of RBM has binary hidden nodes and binary visible nodes. The joint
distribution then has the following form:

p(v,h|✓) =

1

Z(✓)

exp(�E(v,h; ✓)) (27.97)

E(v,h; ✓) , �
RX

r=1

KX

k=1

vrhkWrk �
RX

r=1

vrbr �
KX

k=1

hkck (27.98)

= �(vT Wh + vT b + hT c) (27.99)

Z(✓) =

X

v

X

h

exp(�E(v,h; ✓)) (27.100)

where E is the energy function, W is a R⇥K weight matrix, b are the visible bias terms, c are
the hidden bias terms, and ✓ = (W,b, c) are all the parameters. For notational simplicity, we

BINARY RESTRICTED
BOLTZMANN MACHINES

Binary visible nodes and binary
hidden nodes

Joint distribution has the form
shown below

27.7. Restricted Boltzmann machines (RBMs) 939

Visible Hidden Name Reference
Binary Binary Binary RBM (Hinton 2002)
Gaussian Binary Gaussian RBM (Welling and Sutton 2005)
Categorical Binary Categorical RBM (Salakhutdinov et al. 2007)
Multiple categorical Binary Replicated softmax/ undirected LDA (Salakhutdinov and Hinton 2010)
Gaussian Gaussian Undirected PCA (Marks and Movellan 2001)
Binary Gaussian Undirected binary PCA (Welling and Sutton 2005)

Table 27.1 Summary of di�erent kinds of RBM.

restriction that exactly one bit is on at a time. This is called a localist encoding, since only
one hidden unit is used to generate the response vector. This is analogous to the hypothetical
notion of grandmother cells in the brain, that are able to recognize only one kind of object.
By contrast, an RBM uses a distributed encoding, where many units are involved in generating
each output. Models that used vector-valued hidden variables, such as ⇡ 2 SK , as in mPCA/
LDA, or z 2 RK , as in ePCA also use distributed encodings.
The main di�erence between an RBM and directed two-layer models is that the hidden

variables are conditionally independent given the visible variables, so the posterior factorizes:

p(h|v, ✓) =

Y

k

p(hk|v, ✓) (27.96)

This makes inference much simpler than in a directed model, since we can estimate each hk

independently and in parallel, as in a feedforward neural network. The disadvantage is that
training undirected models is much harder, as we discuss below.

27.7.1 Varieties of RBMs

In this section, we describe various forms of RBMs, by defining di�erent pairwise potential
functions. See Table 27.1 for a summary. All of these are special cases of the exponential
family harmonium (Welling et al. 2004).

27.7.1.1 Binary RBMs

The most common form of RBM has binary hidden nodes and binary visible nodes. The joint
distribution then has the following form:

p(v,h|✓) =

1

Z(✓)

exp(�E(v,h; ✓)) (27.97)

E(v,h; ✓) , �
RX

r=1

KX

k=1

vrhkWrk �
RX

r=1

vrbr �
KX

k=1

hkck (27.98)

= �(vT Wh + vT b + hT c) (27.99)

Z(✓) =

X

v

X

h

exp(�E(v,h; ✓)) (27.100)

where E is the energy function, W is a R⇥K weight matrix, b are the visible bias terms, c are
the hidden bias terms, and ✓ = (W,b, c) are all the parameters. For notational simplicity, we

Restricted Boltzmann Machines
(Smolensky ,1986, called them “harmoniums”)

• We restrict the connectivity to make

learning easier.

– Only one layer of hidden units.

• We will deal with more layers later

– No connections between hidden units.

• In an RBM, the hidden units are

conditionally independent given the

visible states.

– So we can quickly get an unbiased

sample from the posterior distribution

when given a data-vector.

– This is a big advantage over directed

belief nets

hidden

i

j

visible

INFERENCE IN AN RBM

Inference in an RBM is greatly
simplified by its bipartite
structure

940 Chapter 27. Latent variable models for discrete data

will absorb the bias terms into the weight matrix by clamping dummy units v
0

= 1 and h
0

= 1

and setting w
0,: = c and w

:,0 = b. Note that naively computing Z(✓) takes O(2

R
2

K
) time

but we can reduce this to O(min{R2

K , K2

R}) time (Exercise 27.1).
When using a binary RBM, the posterior can be computed as follows:

p(h|v, ✓) =

KY

k=1

p(hk|v, ✓) =

Y

k

Ber(hk|sigm(wT
:,kv)) (27.101)

By symmetry, one can show that we can generate data given the hidden variables as follows:

p(v|h, ✓) =

Y

r

p(vr|h, ✓) =

Y

r

Ber(vr|sigm(wT
r,:h)) (27.102)

We can write this in matrix-vetor notation as follows:

E [h|v✓] = sigm(WT v) (27.103)

E [v|h, ✓] = sigm(Wh) (27.104)

The weights in W are called the generative weights, since they are used to generate the
observations, and the weights in WT are called the recognition weights, since they are used
to recognize the input.
From Equation 27.101, we see that we activate hidden node k in proportion to how much the

input vector v “looks like” the weight vector w
:,k (up to scaling factors). Thus each hidden node

captures certain features of the input, as encoded in its weight vector, similar to a feedforward
neural network.

27.7.1.2 Categorical RBM

We can extend the binary RBM to categorical visible variables by using a 1-of-C encoding,
where C is the number of states for each vir . We define a new energy function as follows
(Salakhutdinov et al. 2007; Salakhutdinov and Hinton 2010):

E(v,h; ✓) , �
RX

r=1

KX

k=1

CX

c=1

vc
rhkW c

rk �
RX

r=1

CX

c=1

vc
rb

c
r �

KX

k=1

hkck (27.105)

The full conditionals are given by

p(vr|h, ✓) = Cat(S({bc
r +

X

k

hkW c
rk}C

c=1

)) (27.106)

p(hk = 1|c, ✓) = sigm(ck +

X

r

X

c

vc
rW

c
rk) (27.107)

27.7.1.3 Gaussian RBM

We can generalize the model to handle real-valued data. In particular, a Gaussian RBM has the
following energy function:

E(v,h|✓) = �
RX

r=1

KX

k=1

Wrkhkvr � 1

2

RX

r=1

(vr � br)
2 �

KX

k=1

akhk (27.108)

940 Chapter 27. Latent variable models for discrete data

will absorb the bias terms into the weight matrix by clamping dummy units v
0

= 1 and h
0

= 1

and setting w
0,: = c and w

:,0 = b. Note that naively computing Z(✓) takes O(2

R
2

K
) time

but we can reduce this to O(min{R2

K , K2

R}) time (Exercise 27.1).
When using a binary RBM, the posterior can be computed as follows:

p(h|v, ✓) =

KY

k=1

p(hk|v, ✓) =

Y

k

Ber(hk|sigm(wT
:,kv)) (27.101)

By symmetry, one can show that we can generate data given the hidden variables as follows:

p(v|h, ✓) =

Y

r

p(vr|h, ✓) =

Y

r

Ber(vr|sigm(wT
r,:h)) (27.102)

We can write this in matrix-vetor notation as follows:

E [h|v✓] = sigm(WT v) (27.103)

E [v|h, ✓] = sigm(Wh) (27.104)

The weights in W are called the generative weights, since they are used to generate the
observations, and the weights in WT are called the recognition weights, since they are used
to recognize the input.
From Equation 27.101, we see that we activate hidden node k in proportion to how much the

input vector v “looks like” the weight vector w
:,k (up to scaling factors). Thus each hidden node

captures certain features of the input, as encoded in its weight vector, similar to a feedforward
neural network.

27.7.1.2 Categorical RBM

We can extend the binary RBM to categorical visible variables by using a 1-of-C encoding,
where C is the number of states for each vir . We define a new energy function as follows
(Salakhutdinov et al. 2007; Salakhutdinov and Hinton 2010):

E(v,h; ✓) , �
RX

r=1

KX

k=1

CX

c=1

vc
rhkW c

rk �
RX

r=1

CX

c=1

vc
rb

c
r �

KX

k=1

hkck (27.105)

The full conditionals are given by

p(vr|h, ✓) = Cat(S({bc
r +

X

k

hkW c
rk}C

c=1

)) (27.106)

p(hk = 1|c, ✓) = sigm(ck +

X

r

X

c

vc
rW

c
rk) (27.107)

27.7.1.3 Gaussian RBM

We can generalize the model to handle real-valued data. In particular, a Gaussian RBM has the
following energy function:

E(v,h|✓) = �
RX

r=1

KX

k=1

Wrkhkvr � 1

2

RX

r=1

(vr � br)
2 �

KX

k=1

akhk (27.108)

940 Chapter 27. Latent variable models for discrete data

will absorb the bias terms into the weight matrix by clamping dummy units v
0

= 1 and h
0

= 1

and setting w
0,: = c and w

:,0 = b. Note that naively computing Z(✓) takes O(2

R
2

K
) time

but we can reduce this to O(min{R2

K , K2

R}) time (Exercise 27.1).
When using a binary RBM, the posterior can be computed as follows:

p(h|v, ✓) =

KY

k=1

p(hk|v, ✓) =

Y

k

Ber(hk|sigm(wT
:,kv)) (27.101)

By symmetry, one can show that we can generate data given the hidden variables as follows:

p(v|h, ✓) =

Y

r

p(vr|h, ✓) =

Y

r

Ber(vr|sigm(wT
r,:h)) (27.102)

We can write this in matrix-vetor notation as follows:

E [h|v✓] = sigm(WT v) (27.103)

E [v|h, ✓] = sigm(Wh) (27.104)

The weights in W are called the generative weights, since they are used to generate the
observations, and the weights in WT are called the recognition weights, since they are used
to recognize the input.
From Equation 27.101, we see that we activate hidden node k in proportion to how much the

input vector v “looks like” the weight vector w
:,k (up to scaling factors). Thus each hidden node

captures certain features of the input, as encoded in its weight vector, similar to a feedforward
neural network.

27.7.1.2 Categorical RBM

We can extend the binary RBM to categorical visible variables by using a 1-of-C encoding,
where C is the number of states for each vir . We define a new energy function as follows
(Salakhutdinov et al. 2007; Salakhutdinov and Hinton 2010):

E(v,h; ✓) , �
RX

r=1

KX

k=1

CX

c=1

vc
rhkW c

rk �
RX

r=1

CX

c=1

vc
rb

c
r �

KX

k=1

hkck (27.105)

The full conditionals are given by

p(vr|h, ✓) = Cat(S({bc
r +

X

k

hkW c
rk}C

c=1

)) (27.106)

p(hk = 1|c, ✓) = sigm(ck +

X

r

X

c

vc
rW

c
rk) (27.107)

27.7.1.3 Gaussian RBM

We can generalize the model to handle real-valued data. In particular, a Gaussian RBM has the
following energy function:

E(v,h|✓) = �
RX

r=1

KX

k=1

Wrkhkvr � 1

2

RX

r=1

(vr � br)
2 �

KX

k=1

akhk (27.108)

OTHER TYPES OF RBMS

Categorical RBMs:

Gaussian RBMs:

940 Chapter 27. Latent variable models for discrete data

will absorb the bias terms into the weight matrix by clamping dummy units v
0

= 1 and h
0

= 1

and setting w
0,: = c and w

:,0 = b. Note that naively computing Z(✓) takes O(2

R
2

K
) time

but we can reduce this to O(min{R2

K , K2

R}) time (Exercise 27.1).
When using a binary RBM, the posterior can be computed as follows:

p(h|v, ✓) =

KY

k=1

p(hk|v, ✓) =

Y

k

Ber(hk|sigm(wT
:,kv)) (27.101)

By symmetry, one can show that we can generate data given the hidden variables as follows:

p(v|h, ✓) =

Y

r

p(vr|h, ✓) =

Y

r

Ber(vr|sigm(wT
r,:h)) (27.102)

We can write this in matrix-vetor notation as follows:

E [h|v✓] = sigm(WT v) (27.103)

E [v|h, ✓] = sigm(Wh) (27.104)

The weights in W are called the generative weights, since they are used to generate the
observations, and the weights in WT are called the recognition weights, since they are used
to recognize the input.
From Equation 27.101, we see that we activate hidden node k in proportion to how much the

input vector v “looks like” the weight vector w
:,k (up to scaling factors). Thus each hidden node

captures certain features of the input, as encoded in its weight vector, similar to a feedforward
neural network.

27.7.1.2 Categorical RBM

We can extend the binary RBM to categorical visible variables by using a 1-of-C encoding,
where C is the number of states for each vir . We define a new energy function as follows
(Salakhutdinov et al. 2007; Salakhutdinov and Hinton 2010):

E(v,h; ✓) , �
RX

r=1

KX

k=1

CX

c=1

vc
rhkW c

rk �
RX

r=1

CX

c=1

vc
rb

c
r �

KX

k=1

hkck (27.105)

The full conditionals are given by

p(vr|h, ✓) = Cat(S({bc
r +

X

k

hkW c
rk}C

c=1

)) (27.106)

p(hk = 1|c, ✓) = sigm(ck +

X

r

X

c

vc
rW

c
rk) (27.107)

27.7.1.3 Gaussian RBM

We can generalize the model to handle real-valued data. In particular, a Gaussian RBM has the
following energy function:

E(v,h|✓) = �
RX

r=1

KX

k=1

Wrkhkvr � 1

2

RX

r=1

(vr � br)
2 �

KX

k=1

akhk (27.108)

940 Chapter 27. Latent variable models for discrete data

will absorb the bias terms into the weight matrix by clamping dummy units v
0

= 1 and h
0

= 1

and setting w
0,: = c and w

:,0 = b. Note that naively computing Z(✓) takes O(2

R
2

K
) time

but we can reduce this to O(min{R2

K , K2

R}) time (Exercise 27.1).
When using a binary RBM, the posterior can be computed as follows:

p(h|v, ✓) =

KY

k=1

p(hk|v, ✓) =

Y

k

Ber(hk|sigm(wT
:,kv)) (27.101)

By symmetry, one can show that we can generate data given the hidden variables as follows:

p(v|h, ✓) =

Y

r

p(vr|h, ✓) =

Y

r

Ber(vr|sigm(wT
r,:h)) (27.102)

We can write this in matrix-vetor notation as follows:

E [h|v✓] = sigm(WT v) (27.103)

E [v|h, ✓] = sigm(Wh) (27.104)

The weights in W are called the generative weights, since they are used to generate the
observations, and the weights in WT are called the recognition weights, since they are used
to recognize the input.
From Equation 27.101, we see that we activate hidden node k in proportion to how much the

input vector v “looks like” the weight vector w
:,k (up to scaling factors). Thus each hidden node

captures certain features of the input, as encoded in its weight vector, similar to a feedforward
neural network.

27.7.1.2 Categorical RBM

We can extend the binary RBM to categorical visible variables by using a 1-of-C encoding,
where C is the number of states for each vir . We define a new energy function as follows
(Salakhutdinov et al. 2007; Salakhutdinov and Hinton 2010):

E(v,h; ✓) , �
RX

r=1

KX

k=1

CX

c=1

vc
rhkW c

rk �
RX

r=1

CX

c=1

vc
rb

c
r �

KX

k=1

hkck (27.105)

The full conditionals are given by

p(vr|h, ✓) = Cat(S({bc
r +

X

k

hkW c
rk}C

c=1

)) (27.106)

p(hk = 1|c, ✓) = sigm(ck +

X

r

X

c

vc
rW

c
rk) (27.107)

27.7.1.3 Gaussian RBM

We can generalize the model to handle real-valued data. In particular, a Gaussian RBM has the
following energy function:

E(v,h|✓) = �
RX

r=1

KX

k=1

Wrkhkvr � 1

2

RX

r=1

(vr � br)
2 �

KX

k=1

akhk (27.108)

27.7. Restricted Boltzmann machines (RBMs) 941

The parameters of the model are ✓ = (wrk, ak, br). (We have assumed the data is standardized,
so we fix the variance to �2

= 1.) Compare this to a Gaussian in information form:

Nc(v|⌘,⇤) / exp(⌘T v � 1

2

vT ⇤v) (27.109)

where ⌘ = ⇤µ. We see that we have set ⇤ = I, and ⌘ =

P
k hkw:,k . Thus the mean is

given by µ = ⇤�1⌘ =

P
k hkw:,k . The full conditionals, which are needed for inference and

learning, are given by

p(vr|h, ✓) = N (vr|br +

X

k

wrkhk, 1) (27.110)

p(hk = 1|v, ✓) = sigm

ck +

X

r

wrkvr

!
(27.111)

We see that each visible unit has a Gaussian distribution whose mean is a function of the
hidden bit vector. More powerful models, which make the (co)variance depend on the hidden
state, can also be developed (Ranzato and Hinton 2010).

27.7.1.4 RBMs with Gaussian hidden units

If we use Gaussian latent variables and Gaussian visible variables, we get an undirected version
of factor analysis. However, it turns out that it is identical to the standard directed version
(Marks and Movellan 2001).
If we use Gaussian latent variables and categorical observed variables, we get an undirected

version of categorical PCA (Section 27.2.2). In (Salakhutdinov et al. 2007), this was applied to the
Netflix collaborative filtering problem, but was found to be significantly inferior to using binary
latent variables, which have more expressive power.

27.7.2 Learning RBMs

In this section, we discuss some ways to compute ML parameter estimates of RBMs, using
gradient-based optimizers. It is common to use stochastic gradient descent, since RBMs often
have many parameters and therefore need to be trained on very large datasets. In addition, it is
standard to use `

2

regularization, a technique that is often called weight decay in this context.
This requires a very small change to the objective and gradient, as discussed in Section 8.3.6.

27.7.2.1 Deriving the gradient using p(h, v|✓)

To compute the gradient, we can modify the equations from Section 19.5.2, which show how to
fit a generic latent variable maxent model. In the context of the Boltzmann machine, we have
one feature per edge, so the gradient is given by

@`

@wrk
=

1

N

NX

i=1

E [vrhk|vi, ✓] � E [vrhk|✓] (27.112)

We can write this in matrix-vector form as follows:

r
w

` = Epemp(·|✓)

⇥
vhT

⇤� Ep(·|✓)

⇥
vhT

⇤
(27.113)

LEARNING IN RBMS

The learning rule for training RBMs
is surprisingly simple:

This accounts for their popularity

However, efficient learning requires
making quite a few approximations

Gibbs sampling and contrastive
divergence methods

27.7. Restricted Boltzmann machines (RBMs) 941

The parameters of the model are ✓ = (wrk, ak, br). (We have assumed the data is standardized,
so we fix the variance to �2

= 1.) Compare this to a Gaussian in information form:

Nc(v|⌘,⇤) / exp(⌘T v � 1

2

vT ⇤v) (27.109)

where ⌘ = ⇤µ. We see that we have set ⇤ = I, and ⌘ =

P
k hkw:,k . Thus the mean is

given by µ = ⇤�1⌘ =

P
k hkw:,k . The full conditionals, which are needed for inference and

learning, are given by

p(vr|h, ✓) = N (vr|br +

X

k

wrkhk, 1) (27.110)

p(hk = 1|v, ✓) = sigm

ck +

X

r

wrkvr

!
(27.111)

We see that each visible unit has a Gaussian distribution whose mean is a function of the
hidden bit vector. More powerful models, which make the (co)variance depend on the hidden
state, can also be developed (Ranzato and Hinton 2010).

27.7.1.4 RBMs with Gaussian hidden units

If we use Gaussian latent variables and Gaussian visible variables, we get an undirected version
of factor analysis. However, it turns out that it is identical to the standard directed version
(Marks and Movellan 2001).
If we use Gaussian latent variables and categorical observed variables, we get an undirected

version of categorical PCA (Section 27.2.2). In (Salakhutdinov et al. 2007), this was applied to the
Netflix collaborative filtering problem, but was found to be significantly inferior to using binary
latent variables, which have more expressive power.

27.7.2 Learning RBMs

In this section, we discuss some ways to compute ML parameter estimates of RBMs, using
gradient-based optimizers. It is common to use stochastic gradient descent, since RBMs often
have many parameters and therefore need to be trained on very large datasets. In addition, it is
standard to use `

2

regularization, a technique that is often called weight decay in this context.
This requires a very small change to the objective and gradient, as discussed in Section 8.3.6.

27.7.2.1 Deriving the gradient using p(h, v|✓)

To compute the gradient, we can modify the equations from Section 19.5.2, which show how to
fit a generic latent variable maxent model. In the context of the Boltzmann machine, we have
one feature per edge, so the gradient is given by

@`

@wrk
=

1

N

NX

i=1

E [vrhk|vi, ✓] � E [vrhk|✓] (27.112)

We can write this in matrix-vector form as follows:

r
w

` = Epemp(·|✓)

⇥
vhT

⇤� Ep(·|✓)

⇥
vhT

⇤
(27.113)

Restricted Boltzmann Machines
(Smolensky ,1986, called them “harmoniums”)

• We restrict the connectivity to make

learning easier.

– Only one layer of hidden units.

• We will deal with more layers later

– No connections between hidden units.

• In an RBM, the hidden units are

conditionally independent given the

visible states.

– So we can quickly get an unbiased

sample from the posterior distribution

when given a data-vector.

– This is a big advantage over directed

belief nets

hidden

i

j

visible

LEARNING RBMS

Deep learning
models use
gradient-based
methods to derive
maximum likelihood
estimators for
RBMs

Gradient-based ML
estimators enable
scaling deep
learning models to
large datasets

The Energy of a joint configuration
(ignoring terms to do with biases)

∑−=
ji

ijji whvv,hE
,

)(

weight between

units i and j

Energy with configuration

v on the visible units and

h on the hidden units

binary state of

visible unit i

binary state of

hidden unit j

ji

ij

hv
w

hvE
=

∂

∂
−

),(

942 Chapter 27. Latent variable models for discrete data

where p
emp

(v,h|✓) , p(h|v, ✓)p
emp

(v), and p
emp

(v) =

1

N

PN
i=1

�
v

i

(v) is the empirical
distribution. (We can derive a similar expression for the bias terms by setting vr = 1 or
hk = 1.)
The first term on the gradient, when v is fixed to a data case, is sometimes called the

clamped phase, and the second term, when v is free, is sometimes called the unclamped
phase. When the model expectations match the empirical expectations, the two terms cancel
out, the gradient becomes zero and learning stops. This algorithm was first proposed in (Ackley
et al. 1985). The main problem is e�ciently computing the expectations. We discuss some ways
to do this below.

27.7.2.2 Deriving the gradient using p(v|✓)

We now present an alternative way to derive Equation 27.112, which also applies to other energy
based models. First we marginalize out the hidden variables and write the RBM in the form
p(v|✓) =

1

Z(✓)

exp(�F (v; ✓)), where F (v; ✓) is the free energy:

F (v) ,
X

h

E(v,h) =

X

h

exp

RX

r=1

KX

k=1

vrhkWrk

!
(27.114)

=

X

h

KY

k=1

exp

RX

r=1

vrhkWrk

!
(27.115)

=

KY

k=1

X

h
r

2{0,1}
exp

RX

r=1

vrhrWrk

!
(27.116)

=

KY

k=1

1 + exp(

RX

r=1

vrWrk)

!
(27.117)

Next we write the (scaled) log-likelihood in the following form:

`(✓) =

1

N

NX

i=1

log p(vi|✓) = � 1

N

NX

i=1

F (vi|✓) � log Z(✓) (27.118)

Using the fact that Z(✓) =

P
v

exp(�F (v; ✓)) we have

r`(✓) = � 1

N

NX

i=1

rF (vi) � rZ

Z
(27.119)

= � 1

N

NX

i=1

rF (vi) +

X

v

rF (v)

exp(�F (v))

Z
(27.120)

= � 1

N

NX

i=1

rF (vi) + E [rF (v)] (27.121)

Plugging in the free energy (Equation 27.117), one can show that

@

@wrk
F (v) = �vrE [hk|v, ✓] = �E [vrhk|v, ✓] (27.122)

See Chapter 27
Section 27.1

in Murphy’s textbook

GIBBS SAMPLING

Gibbs sampling is a widely used
sampling method in statistics to
sample from complex distributions

It is widely used in graphical models

It is an example of a class of
sampling algorithms called Markov
Chain Monte Carlo (MCMC)

Gibbs sampling can be slow
because it only samples one
variable at a time

792 Chapter 24. Markov Chain Monte Carlo (MCMC) inference

24.2 Gibbs sampling

In this section, we present one of the most popular MCMC algorithms, known as Gibbs sam-
pling.3 (In physics, this method is known as Glauber dynamics or the heat bath method.) This
is the MCMC analog of coordinate descent.

24.2.1 Basic idea

Suppose we have some hidden variables h representing the unknowns, and some visible vari-
ables v representing the data, and we want to draw samples from p(h|v). MCMC algorithms do
not require that the posterior distribution be normalized, so we can equivalently sample from
p(h,v). To simplify notation, we will denote all the variables taken together, whether hidden or
visible, by x. We now describe a way to draw samples from p(x), which could be a prior (if v
is empty) or a posterior (if v is non-empty).
The idea behind Gibbs sampling is that we sample each variable in turn, conditioned on the

values of all the other variables in the distribution. That is, given a joint sample xs of all the
variables, we generate a new sample xs+1 by sampling each component in turn, based on the
most recent values of the other variables. For example, if we have D = 3 variables, we use

• xs+1

1

⇠ p(x
1

|xs
2

, xs
3

)

• xs+1

2

⇠ p(x
2

|xs+1

1

, xs
3

)

• xs+1

3

⇠ p(x
3

|xs+1

1

, xs+1

2

)

This readily generalizes to D variables. If xi is a visible variable, we do not sample it, since its
value is already known.
The expression p(xi|x�i) is called the full conditional for variable i. In general, xi may only

depend on some of the other variables. If we represent p(x) as a graphical model, we can infer
the dependencies by looking at i’s Markov blanket, which are its neighbors in the graph. Thus
to sample xi, we only need to know the values of i’s neighbors. In this sense, Gibbs sampling
is a distributed algorithm. However, it is not a parallel algorithm, since the samples must be
generated sequentially.

For reasons that we will explain in Section 24.4.1, it is necessary to discard some of the
initial samples until the Markov chain has burned in, or entered its stationary distribution. We
discuss how to estimate when burnin has occured in Section 24.4.1. In the examples below, we
just discard the initial 25% of the samples, for simplicity.

24.2.2 Example: Gibbs sampling for the Ising model

In Section 21.3.2, we applied mean field to an Ising model. Here we apply Gibbs sampling.
Gibbs sampling in pairwise MRF/CRF takes the form

p(xt|x�t, ✓) /
Y

s2nbr(t)

 st(xs, xt) (24.1)

3. Josiah Willard Gibbs, 1839–1903, was an American physicist.

24.2. Gibbs sampling 793

sample 1, Gibbs

−1

−0.5

0

0.5

1

(a)

sample 5, Gibbs

−1

−0.5

0

0.5

1

(b)

mean after 15 sweeps of Gibbs

−1

−0.5

0

0.5

1

(c)

Figure 24.1 Example of image denoising. We use an Ising prior with Wij = 1 and a Gaussian noise
model with � = 2. We use Gibbs sampling (Section 24.2) to perform approximate inference. (a) Sample
from the posterior after one sweep over the image. (b) Sample after 5 sweeps. (c) Posterior mean, computed
by averaging over 15 sweeps. Compare to Figure 21.3 which shows the results of using mean field inference.
Figure generated by isingImageDenoiseDemo.

In the case of an Ising model with edge potentials (xs, xt) = exp(Jxsxt), where xt 2
{�1, +1}, the full conditional becomes

p(xt = +1|x�t, ✓) =

Q
s2nbr(t) st(xt = +1, xs)Q

s2nbr(t) (st = +1, xs) +

Q
s2nbr(t) (xt = �1, xs)

(24.2)

=

exp[J
P

s2nbr(t) xs]

exp[J
P

s2nbr(t) xs] + exp[�J
P

s2nbr(t) xs]
(24.3)

=

exp[J⌘t]

exp[J⌘t] + exp[�J⌘t]
= sigm(2J⌘t) (24.4)

where J is the coupling strength, ⌘t , P
s2nbr(t) xt and sigm(u) = 1/(1+e�u

) is the sigmoid
function. It is easy to see that ⌘ = xt(at � dt), where at is the number of neighbors that agree
with (have the same sign as) t, and dt is the number of neighbors who disagree. If this number
is equal, the “forces” on xt cancel out, so the full conditional is uniform.

We can combine an Ising prior with a local evidence term t. For example, with a Gaussian
observation model, we have t(xt) = N (yt|xt,�2

). The full conditional becomes

p(xt = +1|x�t,y, ✓) =

exp[J⌘t] t(+1)

exp[J⌘t] t(+1) + exp[�J⌘t] t(�1)

(24.5)

= sigm

✓
2J⌘t � log

 t(+1)

 t(�1)

◆
(24.6)

Now the probability of xt entering each state is determined both by compatibility with its
neighbors (the Ising prior) and compatibility with the data (the local likelihood term).
See Figure 24.1 for an example of this algorithm applied to a simple image denoising problem.

The results are similar to mean field (Figure 21.3) except that the final estimate (based on
averaging the samples) is somewhat “blurrier”, due to the fact that mean field tends to be
over-confident.

Image Denoising with
Gibbs Sampling

A picture of the maximum likelihood learning

algorithm for an RBM

0>< jihv
∞>< jihv

i

j

i

j

i

j

i

j

t = 0 t = 1 t = 2 t = infinity

∞><−><=
∂

∂
jiji

ij

hvhv
w

vp 0)(log

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in

parallel and updating all the visible units in parallel.

a fantasy

A quick way to learn an RBM

0>< jihv
1>< jihv

i

j

i

j

t = 0 t = 1

)(10 ><−><=∆ jijiij hvhvw ε

Start with a training vector on the

visible units.

Update all the hidden units in

parallel

Update the all the visible units in

parallel to get a “reconstruction”.

Update the hidden units again.

This is not following the gradient of the log likelihood. But it

works well. It is approximately following the gradient of another

objective function (Carreira-Perpinan & Hinton, 2005).

reconstructiondata

How to learn a set of features that are good for

reconstructing images of the digit 2

50 binary

feature

neurons

16 x 16

pixel

image

50 binary

feature

neurons

16 x 16

pixel

image

Increment weights

between an active

pixel and an active

feature

Decrement weights

between an active

pixel and an active

feature

 data

(reality)

 reconstruction

(better than reality)

The final 50 x 256 weights

Each neuron grabs a different feature.

Examples of correctly recognized handwritten digits

that the neural network had never seen before

Its very

good

28.3. Training deep networks 955

W

W

W +�

W

W

W

W

W +�

W +�

W +�

W

W +�

W +�

W +�

+�

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine�tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Figure 28.3 Training a deep autoencoder. (a) First we greedily train some RBMs. (b) Then we construct
the auto-encoder by replicating the weights. (c) Finally we fine-tune the weights using back-propagation.
From Figure 1 of (Hinton and Salakhutdinov 2006). Used with kind permission of Ruslan Salakhutdinov.

of the RBM parameters. Finally, perform a downwards ancestral sampling pass (which is an
approximate sample from the posterior), and update the logistic CPD parameters using a small
gradient step. This is called the up-down procedure. See (Hinton et al. 2006) for further details.
Unfortunately this procedure is very slow.

28.3.2 Fitting deep neural nets

If we are using a DBN for discriminative purposes, we can convert it to a feedforward neural
network or multi-layer perceptron (MLP) and then back-propogate the error through the whole
system to update the weights. This is known as discriminative fine tuning. This results in
better performance than pure generative training.
This approach of first fitting a DBN in an unsupervised way in order to initialize the weights

of a neural network is called generative pre-training. It is believed that this acts like a
data-induced regularizer, and helps backpropagation find local minima with good generalization
properties (Erhan et al. 2010; Glorot and Bengio 2010).

28.3.3 Fitting deep auto-encoders

An auto-encoder is a kind of unsupervised neural network that is used for dimensionality
reduction and feature discovery. More precisely, an auto-encoder is a feedforward neural network
that is trained to predict the input itself. To prevent the system from learning the trivial identity

958 Chapter 28. Deep learning

(a)

Legal/JudicialLeading
Economic
Indicators

European Community
Monetary/Economic

Accounts/
Earnings

Interbank Markets

Government
Borrowings

Disasters and
Accidents

Energy Markets

(b)

Figure 28.5 2d visualization of some bag of words data from the Reuters RCV1-v2 corpus. (a) Results of
using LSA. (b) results of using a deep auto-encoder. Source: Figure 4 of (Hinton and Salakhutdinov 2006).
Used with kind permission of Ruslan Salakhutdinov.

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 100

10

20

30

40

50

Recall (%)

Pr
ec

is
io

n
(%

)

Autoencoder 10D
LSA 10D
LSA 50D
Autoencoder 10D
prior to fine−tuning

Figure 28.6 Precision-recall curves for document retrieval in the Reuters RCV1-v2 corpus. Source: Figure
3.9 of (Salakhutdinov 2009). Used with kind permission of Ruslan Salakhutdinov.

produced by the auto-encoder. It is clear that the low-dimensional representation created by
the auto-encoder has captured a lot of the meaning of the documents, even though class labels
were not used. See (Hinton and Salakhutdinov 2006) for further details.

28.4.3 Information retrieval using deep autoencoders (semantic hashing)

In view of the sucess of RBMs for information retrieval discussed in Section 27.7.3.1, it is natural
to wonder if deep models can do even better. In fact they can, as is shown in Figure 28.6.
More interestingly, we can use a binary low-dimensional representation in the middle layer of

the deep auto-encoder, rather than a continuous representation computed by LSI, to enable very
fast retrieval of related documents. For example, if we use a 20-bit code, we can precompute the
binary representation for all the documents, and then create a hash-table mapping codewords
to documents. This approach is known as semantic hashing, since the binary representation

Latent Semantic
Indexing Deep Autoencoders

Results on a Reuters news collection
(see Chapter 28, Murphy ML text)

LEARNING IMAGE FEATURES
28.5. Discussion 961

faces, cars, airplanes, motorbikes

(a) (b)

Figure 28.8 Visualization of the filters learned by a convolutional DBN in layers two and three. Source:
Figure 3 of (Lee et al. 2009). Used with kind permission of Honglak Lee.

objects.

28.5 Discussion

So far, we have been discussing models inspired by low-level processing in the brain. These
models have produced useful features for simple classification tasks. But can this pure bottom-up
approach scale to more challenging problems, such as scene interpretation or natural language
understanding?
To put the problem in perspective, consider the DBN for handwritten digit classification in

Figure 28.4(a). This has about 1.6M free parameters (28⇥ 28⇥ 500+500⇥ 500+510⇥ 2000 =

1, 662, 000). Although this is a lot, it is tiny compared to the number of neurons in the brain.
As Hinton says,

This is about as many parameters as 0.002 cubic millimetres of mouse cortex, and several
hundred networks of this complexity could fit within a single voxel of a high-resolution
fMRI scan. This suggests that much bigger networks may be required to compete with
human shape recognition abilities. — (Hinton et al. 2006, p1547).

To scale up to more challenging problems, various groups are using GPUs (see e.g., (Raina
et al. 2009)) and/or parallel computing. But perhaps a more e�cient approach is to work at a
higher level of abstraction, where inference is done in the space of objects and properties of
objects, rather than in the space of bits and pixels. That is, we want to bridge the signal-to-
symbol divide, where by “symbol” we mean something atomic, that can be combined with other
symbols in a compositional way. The question of how to convert low level signals into a more
structured/ “semantic” representation is known as the symbol grounding problem (Harnard
1990). Hopefully machine learning will help make progress towards solving this problem in the
near future.

CONVOLUTIONAL NETWORKS
960 Chapter 28. Deep learning

x1 x2 x3 x4

h1
1 h1

2 h1
3 h2

1 h2
2 h2

3
w1 w1

w1

w2

w2 w2

(a)

(b)

Figure 28.7 (a) A small 1d convolutional RBM with two groups of hidden units, each associated with a
filter of size 2. (b) A larger 2d convolutional RBM with max-pooling layers. The input signal is a stack of
ch 2d images (e.g., color planes). There are |W | groups of filters. Each group has a stack of filters. Each
hidden unit is obtained by convolving with the appropriate filter, and then summing over the color stacks.
The final layer is obtained by computing the local maximum within a small window. Source: Figure 1 of
(Chen et al. 2010) . Used with kind permission of Bo Chen.

(Lee et al. 2009) applies 1d convolutional DBNs of depth 2 to auditory data. When the input
consists of speech signals, the method recovers a representation that is similar to phonemes.
When applied to music classification and speaker identification, their method outperforms tech-
niques using standard features such as MFCC. (All features were fed into the same discriminative
classifier.) In (Seide et al. 2011), a deep neural net was used in place of a GMM inside a conven-
tional HMM to achieve state of the art performance on conversational speech recognition.

28.4.5 Learning image features using 2d convolutional DBNs

We can extend a convolutional DBN from 1d to 2d in a straightforward way (Lee et al. 2009).
The results of a 3 layer system trained on four classes of visual objects (cars, motorbikes, faces
and airplanes) from the Caltech 101 dataset are shown in Figure 28.8. We only show the results
for layers 2 and 3, because layer 1 learns Gabor-like filters that are very similar to those learned
by sparse coding, shown in Figure 13.21(b). We see that layer 2 has learned some generic visual
parts that are shared amongst object classes, and layer 3 seems to have filters that look like
grandmother cells, that are specific to individual object classes, and in some cases, to individual

11/19/13 MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges

yann.lecun.com/exdb/mnist/ 2/8

test set was composed of 5,000 patterns from SD-3 and 5,000 patterns from SD-1. The 60,000 pattern
training set contained examples from approximately 250 writers. We made sure that the sets of writers of the
training set and test set were disjoint.

SD-1 contains 58,527 digit images written by 500 different writers. In contrast to SD-3, where blocks of
data from each writer appeared in sequence, the data in SD-1 is scrambled. Writer identities for SD-1 is
available and we used this information to unscramble the writers. We then split SD-1 in two: characters
written by the first 250 writers went into our new training set. The remaining 250 writers were placed in our
test set. Thus we had two sets with nearly 30,000 examples each. The new training set was completed with
enough examples from SD-3, starting at pattern # 0, to make a full set of 60,000 training patterns. Similarly,
the new test set was completed with SD-3 examples starting at pattern # 35,000 to make a full set with
60,000 test patterns. Only a subset of 10,000 test images (5,000 from SD-1 and 5,000 from SD-3) is
available on this site. The full 60,000 sample training set is available.

Many methods have been tested with this training set and test set. Here are a few examples. Details about
the methods are given in an upcoming paper. Some of those experiments used a version of the database
where the input images where deskewed (by computing the principal axis of the shape that is closest to the
vertical, and shifting the lines so as to make it vertical). In some other experiments, the training set was
augmented with artificially distorted versions of the original training samples. The distortions are random
combinations of shifts, scaling, skewing, and compression.

CLASSIFIER PREPROCESSING
TEST

ERROR
RATE (%)

Reference

Linear Classifiers

linear classifier (1-layer NN) none 12.0 LeCun et al. 1998

linear classifier (1-layer NN) deskewing 8.4 LeCun et al. 1998

pairwise linear classifier deskewing 7.6 LeCun et al. 1998

K-Nearest Neighbors

K-nearest-neighbors, Euclidean (L2) none 5.0 LeCun et al. 1998

K-nearest-neighbors, Euclidean (L2) none 3.09 Kenneth Wilder, U. Chicago

K-nearest-neighbors, L3 none 2.83 Kenneth Wilder, U. Chicago

K-nearest-neighbors, Euclidean (L2) deskewing 2.4 LeCun et al. 1998

K-nearest-neighbors, Euclidean (L2) deskewing, noise
removal, blurring 1.80 Kenneth Wilder, U. Chicago

K-nearest-neighbors, L3 deskewing, noise
removal, blurring 1.73 Kenneth Wilder, U. Chicago

K-nearest-neighbors, L3
deskewing, noise
removal, blurring, 1
pixel shift

1.33 Kenneth Wilder, U. Chicago

K-nearest-neighbors, L3
deskewing, noise
removal, blurring, 2
pixel shift

1.22 Kenneth Wilder, U. Chicago

11/19/13 MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges

yann.lecun.com/exdb/mnist/ 3/8

K-NN with non-linear deformation
(IDM)

shiftable edges 0.54 Keysers et al. IEEE PAMI
2007

K-NN with non-linear deformation
(P2DHMDM) shiftable edges 0.52

Keysers et al. IEEE PAMI
2007

K-NN, Tangent Distance subsampling to
16x16 pixels 1.1 LeCun et al. 1998

K-NN, shape context matching shape context
feature extraction 0.63 Belongie et al. IEEE PAMI

2002

Boosted Stumps

boosted stumps none 7.7 Kegl et al., ICML 2009

products of boosted stumps (3 terms) none 1.26 Kegl et al., ICML 2009

boosted trees (17 leaves) none 1.53 Kegl et al., ICML 2009

stumps on Haar features Haar features 1.02 Kegl et al., ICML 2009

product of stumps on Haar f. Haar features 0.87 Kegl et al., ICML 2009

Non-Linear Classifiers

40 PCA + quadratic classifier none 3.3 LeCun et al. 1998

1000 RBF + linear classifier none 3.6 LeCun et al. 1998

SVMs

SVM, Gaussian Kernel none 1.4

SVM deg 4 polynomial deskewing 1.1 LeCun et al. 1998

Reduced Set SVM deg 5 polynomial deskewing 1.0 LeCun et al. 1998

Virtual SVM deg-9 poly [distortions] none 0.8 LeCun et al. 1998

Virtual SVM, deg-9 poly, 1-pixel
jittered none 0.68 DeCoste and Scholkopf, MLJ

2002

Virtual SVM, deg-9 poly, 1-pixel
jittered deskewing 0.68 DeCoste and Scholkopf, MLJ

2002

Virtual SVM, deg-9 poly, 2-pixel
jittered deskewing 0.56 DeCoste and Scholkopf, MLJ

2002

Neural Nets

2-layer NN, 300 hidden units, mean
square error none 4.7 LeCun et al. 1998

2-layer NN, 300 HU, MSE,
[distortions] none 3.6 LeCun et al. 1998

2-layer NN, 300 HU deskewing 1.6 LeCun et al. 1998

2-layer NN, 1000 hidden units none 4.5 LeCun et al. 1998

2-layer NN, 1000 HU, [distortions] none 3.8 LeCun et al. 1998

11/19/13 MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges

yann.lecun.com/exdb/mnist/ 4/8

3-layer NN, 300+100 hidden units none 3.05 LeCun et al. 1998

3-layer NN, 300+100 HU
[distortions] none 2.5 LeCun et al. 1998

3-layer NN, 500+150 hidden units none 2.95 LeCun et al. 1998

3-layer NN, 500+150 HU
[distortions] none 2.45 LeCun et al. 1998

3-layer NN, 500+300 HU, softmax,
cross entropy, weight decay none 1.53 Hinton, unpublished, 2005

2-layer NN, 800 HU, Cross-Entropy
Loss none 1.6 Simard et al., ICDAR 2003

2-layer NN, 800 HU, cross-entropy
[affine distortions] none 1.1 Simard et al., ICDAR 2003

2-layer NN, 800 HU, MSE [elastic
distortions] none 0.9 Simard et al., ICDAR 2003

2-layer NN, 800 HU, cross-entropy
[elastic distortions] none 0.7 Simard et al., ICDAR 2003

NN, 784-500-500-2000-30 + nearest
neighbor, RBM + NCA training [no
distortions]

none 1.0 Salakhutdinov and Hinton, AI-
Stats 2007

6-layer NN 784-2500-2000-1500-
1000-500-10 (on GPU) [elastic
distortions]

none 0.35
Ciresan et al. Neural
Computation 10, 2010 and
arXiv 1003.0358, 2010

committee of 25 NN 784-800-10
[elastic distortions]

width normalization,
deslanting 0.39 Meier et al. ICDAR 2011

deep convex net, unsup pre-training
[no distortions] none 0.83 Deng et al. Interspeech 2010

Convolutional nets

Convolutional net LeNet-1 subsampling to
16x16 pixels 1.7 LeCun et al. 1998

Convolutional net LeNet-4 none 1.1 LeCun et al. 1998

Convolutional net LeNet-4 with K-
NN instead of last layer none 1.1 LeCun et al. 1998

Convolutional net LeNet-4 with
local learning instead of last layer none 1.1 LeCun et al. 1998

Convolutional net LeNet-5, [no
distortions] none 0.95 LeCun et al. 1998

Convolutional net LeNet-5, [huge
distortions] none 0.85 LeCun et al. 1998

FURTHER READING

Chapter 27 and Chapter 28, Murphy’s textbook on ML

Hinton, G. E., Osindero, S. and Teh, Y. (2006), A fast learning
algorithm for deep belief nets, Neural Computation, 18, pp
1527-1554.

Hinton, G. E. and Salakhutdinov, R. R. (2006), Reducing the
dimensionality of data with neural networks, Science, Vol. 313. no.
5786, pp. 504 - 507, 28 July 2006.

